

Update on HF PMT response

Pawel de Barbaro, Vladimir Epshteyn, Dima Vishnevskiy Joe Pastika, Brian Dorney, Sercan Sen

HCAL DPG Meeting November 7, 2011

- Available data
 - 1. HF LED data (local runs)
 - 2. Laser data (abort-gap, global runs, only HFM)
 - 3. Phi-symmetry of collisions data (also work in parallel by brian dorney)
 - 4. SPE analysis (joe pastika)
 - 5. After-pulse data (sercan sen, work in progress)
 - 6. LED trend plots during magnet ramp-down of CMS magnet
 - 7. LED trend plots since end of pp collisions
- Preparing IOVs for HF LEDcorrections
- Outlook for updating conditions in 2012
 - Gain corrections
 - LUTs

Present understanding

- LED& Laser data implies that effect can NOT be explained by radiation damage of HF quartz fibers
- Phi-symmetry analysis of collisions data confirms the effect =>
 - rules outs hypothesis that effect is only some sort of damage of calibration system
- Eta and depth-dependence favor hypothesis of physical change in PMTs
- We do NOT observe increase in after-pulse rate (2011 vs 2009)
- We conclude that we observe actual loss of PMT gain
- SPE indicate degradation of dynode gain
 - No indication of degradation of quantum efficiency of photocathode
- LED data during magnet-ramp down: large drifts for some of the channels
- After-pulse data: work in progress

Phi-symmetry using collisions

Single Photo-electron data (1)

LED and Single Photo-electron data

After-pulse data

- Data taken last week
- Analysis on-going...
- See more datails in Sercan's HCAL Ops mtg talk

HF, magnet on/off, 2011-11-07

LED runs:

DED I WILL										
run#	180017	180168	180187	180397	180406	180411	180417	180422	180436	180460
run ID	1	2	3	4	5	6	7	8	9	10
В, Т	3.8	3.8	3.8	3.8	3.6	3.4	3.2	3.0	2.0	2.0
run#	180461	180473	180479	180484	180545	180556	180616	180630	180723	
run ID	11	12	13	14	15	16	17	18	19	
В, Т	1.0	~0.062	0	0	0	0	0	0	0	

Trend plots after end of pp run

■ Plots not available at this time...

summary

- HF response
 - Collisions data confirms initial observations of LED and Laser
 - phi dependence of PMT response loss is common in calibration and collisions data
 - Eta dependence can not be confirmed, as phi-symmetry method normalizes out any eta-dependent response changes
 - In particular, the neither Phi-symmetry analysis nor LED&Laser analysis is sensitive to potential radiation damage of quartz fibers (assuming RadDam is phi-symmetric)
 - SPE analysis shows strong correlation with LED&Laser data and implies reduction of dynode gains as source of response loss in HF PMTs
 - Observed drifts in some PMT response during magnet ramp-down, under further study
- LEDcorr for HF
 - IOV corrections effort almost finished
 - Validation under way, expect to provide new Tag on Nov 15th